WARM MIX PLUS RAP

Everett Crews, Ph.D. Technical Development Manager MeadWestvaco Corporation

NCAUPG 2009 Madison, WI 4-5 February 2009

OUTLINE

- Recap of Key Issues in RAP Use in HMA
- The Question of Binder "Activation" & Blending
- Results of Lab-Made, Lab-Molded RAP WMA Mixes
- Case Studies with WMA RAP Mixes
- Conclusions
- Future Work

Current National Research: Increasing the RAP Content

Rebecca McDaniel North Central Superpave Center

> Special Joint Conference January 10, 2008

"Big Ten" Tep Ten Research Needs

- 1. Performance test for evaluating RAP
- 2. Best practices manual
- 3. Solventless method to characterize RAP
- 4. Binder grade changes necessary?
- 5. Degree of blending of binders
- 6. Field performance of high RAP mixes
- 7. Replicating plant heating in lab
- 8. Guidance for states to allow higher RAP
- 9. Identification of RAP variability
- 10. Guidance for processing/fractionating RAP

"Big Ten" Tep Ten Resear three issues in WMA

- 1. Performance test for evaluating RAP
- 2. Best practices manual
 - Selventless method to characterize RAP
- 4. Binder grade changes necessary?
- 5. Degree of blending of binders
- 6. Field performance of high RAP mixes
- Replicating plant heating in lab
- 8. Guidance for states to allow higher RAP
- 9. Identification of RAP variability
- 10. Guidance for processing/fractionating RAP

3

RAP CAN BE MANAGED FOR HIGH UNIFORMITY

RAP QC Statistics

Recycled Hot-Mix Asphalt Concrete in Florida: A Variability Study ICAR – 401-1/98

	n	Average (%)	Standard Deviation (%)	
RAP property			Average	Range
Asphalt Content	20	5.4	0.30	0.1 to .55
% Passing Median Sieve	20	47.9	3.11	1.29 to 5.66
% Passing 75 micron Sieve	20	9.1	0.93	0.45 to 2.22

www.eng.auburn.edu/center/ncat/RAP/ Past%20RAP%20ETGs/10-08/Summary %20of%20NCAT%20Survey.ppt

RAP CAN BE MANAGED FOR HIGH UNIFORMITY

RAP QC Statistics

- "...increasing the percentage of RAP does not increase the CV of the mix...in the RAP range of 15-40%..."
- from stockpile analyses: "...RAP had a lower variation [CV] than virgin aggregates"
- from stockpile analyses: "...no significant difference between any of the materials: HMAC, RAP, or virgin aggregate."

Sieve

www.eng.auburn.edu/center/ncat/RAP/ Past%20RAP%20ETGs/10-08/Summary %20of%20NCAT%20Survey.ppt

KEY ISSUE: "BLENDING" OF RAP & VIRGIN BINDERS

Recent work applying Hirsch models:
 Mix dynamic modulus, E* = f (G*, VMA, VFA)
 "Blending" is occurring in tested HMA systems

KEY ISSUE: "BLENDING" OF RAP & VIRGIN BINDERS

9.5 mm With PG 64-22 + 35 % Fractionated RAP, Double Barrel

WARM MIX ASPHALT TECHNOLOGY

KEY ISSUE: "BLENDING" OF RAP & VIRGIN BINDERS

- "Blending" of virgin & oxidized binder more of an issue in Warm Mixes?
- Does the oxidized asphalt in the RAP "blend" with the virgin binder if we lower mix temperatures 50°F? 80°F?
- RAP asphalt (from Maryland to Indiana) are characterized as PG 88-xx to PG 94-xx
- Softening points of PG 88-xx to PG 94-xx asphalts are likely less than 100 C*

^b Blown roofing asphalts have softening points ranging from 85 to 115 C

"BLENDING" OF RAP & VIRGIN BINDERS IN EVOTHERM MIXES

- Evotherm mixes evaluated at 120 C
 - One aggregate: 12.5-mm NMAS, very <u>low absorption</u> granite with <u>same gradation</u> in both mixes below, A & B
 - One set of mixes (A): made with pre-blended binder composed of two binders, a PG 64-22 & and Type III in ratios of 100:0, 80:20, 60:40, & 40:60
 - One set of mixes (B): made with lab-made RAP based on the same virgin aggregate & the Type III binder

"BI ENDING" OF RAP & VIRGIN

Evotherm DAT MODELING PROPERTY VARIATION

EVOTHERM DAT SUMMARY ANALYSIS

%Type III	Mixes A: 100% blended	
in binder blend	PG 64-22 & Type III binders	
	Measured	
	G*/sin δ	Dry ITS
0	3.553	134.5
20	9.087	177
40	14.585	183.5
60	22.415	181.5

Evotherm DAT MODELING PROPERTY VARIATION

EVOTHERM DAT SUMMARY ANALYSIS				
Mixes A: 10	0% blended			
PG 64-22 & Ty	pe III binders			
Measured		Analysis of the variation		
G*/sin δ	Dry ITS	of G*/sinδ and Dry ITS wi		
3.553	134.5	with %Type III in binder		
9.087	177	blend yields Equation 1.		
14.585	183.5			
22.415	181.5			
	EVOTHERM Mixes A: 100 PG 64-22 & Ty Measured G*/sin δ 3.553 9.087 14.585 22.415	EVOTHERM DAT SUMMAR Mixes A: 100% blended PG 64-22 & Type III binders Measured Dry ITS G*/sin δ Dry ITS 3.553 134.5 9.087 177 14.585 183.5 22.415 181.5		

Eq. 1: $G^*/\sin\delta = 0.346(\%RAP) - 0.048(Dry ITS) + 10.16$

Evotherm DAT TESTING MODEL EQUATION

EVOTHERM DAT SUMMARY ANALYSIS

%Type III	Mixes A: 100% blended		Mixes B: Type III RAP	
in binder blend	PG 64-22 & Type III binders		+ virgin agg. + PG 64-22	
or %Type III	Measured			
RAP	G*/sin δ	Dry ITS	Dry ITS	
0	3.553	134.5	134.5	
20	9.087	177	169	
40	14.585	183.5	178.5	
60	22.415	181.5	199	

Evotherm DAT TESTING MODEL EQUATION

Evotherm DAT TESTING MODEL EQUATION

EVOTHERM DAT SUMMARY ANALYSIS

%Type III	Mixes A: 100% blended		Mixes B: Type III RAP	
in binder blend	PG 64-22 & Type III binders		+ virgin agg. + PG 64-22	
or %Type III	Measured		Predicted	
RAP	G*/sin δ	Dry ITS	G*/sin δ	Dry ITS
0	3.553	134.5	3.734	134.5
20	9.087	177	8.998	169
40	14.585	183.5	15.462	178.5
60	22.415	181.5	21.398	199

Eq. 1: G*/sinδ = 0.346(%RAP) – 0.048(Dry ITS) + 10.16

Evotherm DAT

Evotherm 3G SIMILAR MODEL

EVOTHERM 3G SUMMARY ANALYSIS					
%Type III	Mixes A: 100% blended		Mixes B: Type III RAP		
in binder blend	PG 64-22 & Type III binders		+ virgin agg. + PG 64-22		
or %Type III	Measured		Predicted		
RAP	G*/sin δ	Dry ITS	G*/sin δ	Dry ITS	
0	3.553	134.5	3.332	134.5	
20	9.087	175	9.012	167	
40	14.585	173.5	14.968	188	
60	22.415	170.5	21.476	186	

Eq. 2: G*/sinδ = 0.323(%RAP) – 0.024(Dry ITS) + 6.56

HMA Control SIMILAR MODEL

HMA SUMMARY ANALYSIS					
%Type III	Mixes A: 100% blended		Mixes B: Type III RAP		
in binder blend	PG 64-22 & Type III binders		+ virgin agg. + PG 64-22		
or %Type III	Measured		Predicted		
RAP	G*/sin δ	Dry ITS	G*/sin δ	Dry ITS	
0	3.553	153	3.384	153	
20	9.087	205.5	8.379	240.5	
40	14.585	245.5	15.585	227.5	
60	22.415	248.5	21.372	279	

Eq. 3: $G^*/\sin\delta = 0.346(\% RAP) - 0.022(Dry ITS) + 6.75$

Route 44 Overlay

- Pace Construction mix producer & paving contractor
- Conoco Phillips PG 70-22 binder (total Pb = 5.5%)
- N_{-des} =100,12.5-mm NMAS Superpave
- Bussen #3 limestone (Antire Quarry)
- RAP from Pace's Overland, MO, site (Pb = 4.8%)

High RAP Warm Mix Asphalt

20% RAP Control HMA
20% RAP WMA
28% RAP WMA
35% RAP WMA

Approximately 1,000 Tons/Mix Type

35% RAP Warm Mix 20% RAP Hot Mix Control

20% RAP Warm Mix 28% RAP Warm Mix

High RAP Warm Mix Asphalt

	Control	20% RAP	28% RAP	35% RAP
Pen	29	39	32	28
Viscosity	25,920	16,087	16,738	23,470
Ductility	38	79	54	42
DSR 64	7.35	4.39	5.74	7.56
MSCR	26	42	37	32
DSR 70	3.48	2.11	2.91	3.59
BBR -12	0.394	0.437	0.406	0.393

CASE STUDIES: MISSOURI

WARM MIX ASPHALT TECHNOLOGY

Cost Savings Associated with RAP Usage Assume RAP Pb = 5.0% Assume asphalt cost is \$450/ton Assume aggregate cost is \$13/ton

RAP Value = \$450*0.05 + \$13*0.95 ≈ \$35 / ton

Ignoring other costs (milling, WMA additive, etc.), every 1% RAP lowers cost by \$0.35/ton

- Queens Borough mill & overlay
- Peckham Materials was mix producer (Astec Dbl Bar)
 NYC DOT was paving contractor
- Conoco Phillips PG 64-22 binder (total Pb = 5.9%)
- NYC 6FHD,12.5-mm NMAS Superpave, 40% RAP

Evotherm DAT portable solution tote Evotherm metered directly into the asphalt line

Ground temperature at 7 a.m. was < 20 F

Mix temperature behind the screed

mm

EVOTHERM

Icicles hanging from the back of the Hyster steel wheel compactor

Air voids > 92% of Gmm

Excellent joint compaction

CASE STUDIES: NOV. 08, RAP USE IN I-90 WMA PROJECT

I-90 Illinois Tollway

Ross Bentsen, Illinois Tollway, NCAUPG 2008

CASE STUDIES: NOV. 08, RAP IN WMA ON I-90 TOLLWAY

N_{des} 120 GTR PG 76-22 w/ 15% RAP in SMA w/ trap rock

Evotherm mix made at 150 C and 120 C; Control HMA at 175°C

Rock Road Co., mix & paving contractor

CASE STUDIES: NOV. 08, RAP IN WMA I-90 TOLLWAY

HMA Standard, Va = 3.2% 150 C Evotherm, Va = 2.8% 120 C Evotherm, Va = 3.5%

S.T.A.T.E. Testing, L.L.C.

CASE STUDIES: I-78 NEW JERSEY, NOV. 08

N_{des} 100, 12.5 mm NMAS, NuStar Energy PG 76-22, with 25% RAP

Mist & rain at the Traprock Industries mix plant.

MIX ASPHALT TECHNOLOGY

CASE STUDIES: I-78 NEW JERSEY, NOV. 08

CASE STUDIES: I-78 NEW.IERSEY

TECHNOLOGY

ASPHALT

Results of Thomas Bennert, Rutgers University Asphalt Paving Laboratory

CONCLUSIONS

- Lab analysis of field mixes (MO Rt 44) showed the reduced oxidation of WMA binder allowed higher RAP contents than HMA control mixes at same binder stiffness
- "Blending" of oxidized & virgin binders was demonstrated in WMA lab study by comparing mixes made with virgin & Type III binder blends versus mixes made with RAP based on the Type III binder
- Results of numerous field projects demonstrate viability of high-RAP mixes using WMA can be controlled

FUTURE WORK

- Larger high-RAP WMA projects are needed for
 - a more thorough analysis mix performance
 - a more accurate cost analysis
 - an analysis of plant emissions & job site fumes
 - Other field performance evaluations of high-RAP WMA are warranted (e.g., accelerated loading)
- Dynamic mechanical analysis on both lab & field samples of high-RAP WMA versus HMA controls
 – new tiers, e.g,, 20, 20-30, >35%, for %RAP in WMA mixes versus 15, 16-25, >25% in HMA

THANK YOU.

